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ABSTRACT

When the stresses imposed on a fluid are sufficiently large, rupture or
cavitation can occur. Such conditions can exist in many two-phase flow
applications, such as the choked flows, which can occur in seals and
bearings. ‘

Nonspherical bubbles with large aspect ratios have been observed in
fluids under rapid acceleration and high shear fields. These bubbles are
geometrically similar to fracture surface patterns (Griffith crack model)
existing in solids. Analogies between crack growth in solid and fluid
cavitation are proposed and supported by analysis and observation (photo-
graphs). Healing phenomena (void condensation), well accepted in fluid
mechanics, have been observed in some polymers and hypothesized in solid
mechanics. By drawing on the strengths of the theories of solid mechanics
and cavitation, a more complete unified theory can be developed.
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constant, eq. (13)

crack length

diameter

modulus of elasticity

slip ratio parameter

slip ratio parameter, eq. (31)
applied load

function, eq. (12)
function, eq. (21)

free energy, eq. (8)
reduced mass flux
flow-normalizing parameter
constant, eq. (8)
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isothermal bulk modulus
Boltzman constant
singular point

number of molecules
exponent, eq. (13)
pressure

exponent, eq. (21)
exponent, eq. (26)
coordinate
critical size
temperature

trace

time

velocity
free-stream velocity
volume

stored free energy
surface free energy
components of 2z
complex variable

wedge opening angle
parameter, eq. (12)
displacement

surface energy density
modified exponent, eq. (23)
bubble column wavelength
stress :
wedge angle coordinate change
stress function

density

complex variable
components of ¢
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INTRODUCTION

Perhaps the origin of materials fracture research dates to the ancient
philosophers and their quest for a harmonious universe, but the roots of
modern materials fracture research appear to stem from the works of Griffith
(1920) ,reference 1, on fracture of brittle materials and Berthelot (1850),
reference 2, on tensile stresses of fluids. In both cases, the macroscopic
approach is founded on the thermodynamics of Gibbs, Maxwell, et al., and the
condition of fracture propagation depends on small displacements from a
minimal energy state (i.e., a metastable state). Although sharing this
fundamental base, the fields of fluid and solid fracture have developed into
disjoint areas of research. Some early work on the relations of fluids and
crystals, including the formation of voids and dislocations (fracture), is
accumulated in the text by Frenkel (ref. 3). From these areas entire fields
have developed, namely, two-phase flows and boiling, fracture mechanics,
cavitation, metastability, etc., with texts by Tong, Hsu-Graham, Lahey,
Wallis, Hewitt, et al. (refs. 4 to 8), for example, in two-phase flows and
boiling; Shi, Brock, Liebowitz, and Knott (refs. 9 to 12) in fracture mech-
anics; Knapp, et al., and work of Acosta, Briggs, Floberg, Temperley, etc.
(refs. 13 to 17) in cavitation; Skripov and work by Leinhard, etc. (refs. 18
and 19) in metastability - to cite only a few.

The problems in fluid and solid fracture are further complicated when
thin films are involved, such as in tribology (e.g., see the Leeds-Lyon
Conference Series, ref. 20, and monolayer development (e.g., Etters, ref.
21)). Still more complications are added when two-phase flows and heat
transfer with and without sliding contact are considered (refs. 22 to 26).
In most of these cases the flow-imposed stresses are sufficiently large to
fracture (cavitate) the fluid. Such conditions can be readily developed in
such ?pplications as two-phase choked flows, seals, and bearings (refs. 22
to 30).

In this paper the Fisher-Frenkel and Griffith models for fracture propa-
gation in fluids and solids are briefly reviewed, and the parallel nature of
theoretical solutions involving wedge-shaped boundaries and observed frac-
ture and cavitation patterns for fluids and solids are discussed. Finally,
by integrating these results, a unified approach is proposed to describe a
sequence of events associated with the passage of a large bubble through a
narrow channel in two-phase, radially inward flow of fluid nitrogen.

ANALOGY BETWEEN GRIFFITH AND FISHER-FRENKEL CRACK MODELS

For both models, one postulates that a crack will grow or propagate
whenever the incremental release of reversible, stored free energy We

dwe = F ds . (1)

becomes larger than the incremental release of surface free energy Wg

dW, = v dA - (2)

caused by the formation of a new surface. Here F is the applied load, §
the displacement, A the surface area, and y the surface energy density.



Fisher-Frenkel Crack Model (refs. 3 and 31)

The reversible work of formation for a spherical volume V (analogous to
gas spring) is

dH_ = F ds = Tr(o)aV = 4nrlo dr (3)

where Tr(c) is the negative of the applied pressure (Tr(c) = -P). The
release of surface energy, which is related to the cohesive energy and
latent heat of vaporization, for an expanding sphere is

dNS = v dA = 8ayr dr (4)

The total energy change at equilibrium becomes

dW = dwe - dNS (5)

and the critical radius becomes
r¥ = =L - - —L (6)

where AP is the difference outside and inside pressures of the volume V.
Perhaps the most critical comment is that the theory only considers the sys-
tems which will grow isotropically. The rates (inertial, viscous) and the
influence of nearest neighbors in attempting to propagate or to 'heal' the
crack (inhomogeneity or void collapse) are also ignored.

For a favorable chain of statistical events (pressure and thermal fluc-
tuations) such that r > r*, the total energy becomes

W= ~161y3/3[Tr(0)]2 | (7)

For a volume generation rate and a rate constant both related to first-order
reactions (Arrhenius functions), Fisher (ref. 31) gives

[

16 > a
Tr(o) = -P = | 57 (m TRIRKTETRY = Af) | X

where -P denotes tensile stress; for water Tr(o) is about 130 MPa (ref.
31), which is about an order of magnitude too high (refs. 13, 17, and 31)
for pure water in a clean experimental apparatus, two orders for water on
regular surfaces, and three orders for gassed water on irregqular surfaces.
Temperley (ref. 17) gives 3 to 5 MPa for water on glass.

In the appendix, we show that a change in parameters leads to a form
for r* which is nearly the same as that derived for the Griffith model
discussed in the next section.



Griffith Crack Model (ref. 1)

The incremental reversible work of formation, for two surfaces of a
disk-shaped crack, is represented by

2 .
g, » 2T 2 g

where F is the applied load, 2c is the crack length, Tr(o) is the stress,
and E 1is Young's modulus (proportional to isothermal bulk modulus). The
surface energy vy 1is proportional to the cohesive energy and latent heat of
sublimation,

dws = y dA = 4nyC dc (10)
At equilibrium, the critical crack radius becomes

c* = 24E/x[Tr(0) ]2 (11)

and again if ¢ > c*, the crack will grow; otherwise the disturbance will
decay. Calculations using this relation give stresses up to two orders of
magnitude greater than observed (ref. 32).

The estimated fracture stresses for both models are too large. We pos-
tulate that strained nuclei communicate at a wave speed dependent on the
propagation and echo return rates. When sufficient energy is available, the
nuclei can connect in accordance with nearest-neighbor principles. These
connections form cracks or voids. The point is that the maximum stress
prior to cracking is highly dependent on the environment, because small
fluctuations in the geometry or the material properties may decrease the
required free energy. Experimentalists in boiling, cavitation, two-phase
and choked two-phase flows, and fracture mechanics create artifical sites,
sharp changes in streamlines, and high gradients or notches which may be
classified as artificial cracks in order to 'capture' the phenomena for
study. This is not wrong , but it does alter the surface free energy in
such a way that the boundaries constitute the source for the fracture
propagation. And indeed in reality, fractures usually originate at the
free boundary as modeled. Thus, the analyses which ignore small fluctua-
tions serve as guides for experiment because the actual measured values will
be less. Perhaps a practical 1imit would be Tr(o)ca1¢/100.

SINGULARITIES OF CRACK TIP AND WEDGE FLOWS

The uniqueness of solutions to the conventional field equations of solid
and fluid mechanics has been shown for most boundary conditions (Teman, ref.
33, fluid, and Wheeler, ref. 34, solid). One of the conditions required for
uniqueness is that the domain of the problem satisfy some form of a Lipshitz
condition. When the domain of the problem contains a wedge-shaped region,
the Lipshitz condition is not satisfied. Therefore multiple solutions can
be obtained.

As an example of this phenomenon, a generalization of the Williams solu-
tion (ref. 35) of a slit in an elastic solid and the Falkner-Skan solution



for flow over a wedge will be compared. In both problems the domain con-
sidered is an unbounded region with a wedge. We will later relate these
results to fracture photographs (solid and fluid) and radially inward flow
sequences for fluids. '

Wedge Flow Solution

Let us assume that a bubble in radially inward flow can be transformed
(elongated) to appear as a Zhukovskii (Joukowsky) airfoil (ref. 36) (fig. 1).
Here the circle passes through the singular point (-k) and the trailing-edge
curvature is not continuous. Without the attendant Kutta condition, separa-
tion and flow reversal can occur at any angle of attack. Critical here is
the radius of curvature of an element's trajectory (sharpness of the edge),
which determines the associated stress field. Further, let us assume that
the flow can then be directed at the trailing edge as for flow over a wedge
(fig. 2(a)). The problem can be solved by means of the Falkner-Skan equa-
tion applied to a limited portion on the trailing edge of the bubble.

Froo e ff o+ g(1 - £12) < 0 (12)

where B8 = 2a/w. The free-stream velocity will vary as
U"‘° = Cr‘n l (13)

n=oal(n-a) : (14)

and the pressure will be obtained from

u_ du_/dr = -dP/dr (15)
as
_dP/dr = Cnré™l (16)
and

p = —Cr?"/2n + by

(17)
Separation in this case will occur when

8 = -0.1988 » a = -0.312 rad

and consequently

n =-0.09

Cavitation will accompany the separation process if the characteristics of

the free flow will permit the pressure around the wedge tip to fall below
the liquid vapor pressure. The physical significance of the negative 8



can be better understood if an equivalent positive angle is substituted.
This underscores the fact that the solution of the flow equations is not
unique until the power n is specified; with n specified, the power of
the singularity of réh  in the pressure is established and the resulting
pressure field becomes unique.

Elasticity Solution

For the region shown in figure 2(b), the boundary conditions are

r>0 v9=*(1r—u) boee=oer=0
) (18)
v + @ Ore = Urr = 0
If we define a stress function ¢ such that
2 2 2
o i 22.lae o 279 1 39 1 379 ‘ (19)
rr r2 ae2 r ar’ ee 3',2 re r2 36  r ar ae

the stress always satisfies the equilibrium equations; also, the compati-
bility equations reduce to

Ve=20 (20)

If one assumes a stress function in the form
v = rPf (o) | (21)

where fy(8) is an arbitrary function of e, the compatibility equation will
yield the following ordinary differential equation for the function fy:

f{"’ + [p2 + (p - 2)2]f1" + [pz(p - 2)2]f1 =0 | (22)

This linear ordinary differential equation has four terms in its homogeneous
solution; the function f1 is then given by

fl(e) = by sin(x + 1)e + b, cos(x + 1)e

+ b3 sin(x - 1)e + b4 cos(x - 1)e (23)

-where
“a=1-p (24)
By splitting the problem into symmetric and antisymmetric stress fields

and enforcing the boundary conditions (eq. (17)) on the surface of the
wedge, the following condition on A is imposed:



(x + 1) cos(r = 1)(x - a)sin(x + 1)(x - a)

- (3% - 1)sin(x = 1)(r - a)cos(r *+ 1)(x - a) = 0 (25)
Therefore the pressure at the fracture tip in both the fluid and solid
can be expressed in the form

p=rd (26)
where |
2n fluid
4T 1- % solid

A graph of q as a function of wedge angle is shown as figure 3.

Since the boundary conditions and field equations are satisfied for any
p « rd, where n s any integer, several powers of r are valid solutions
to the boundary value problem. Although physical arguments can be used to
eliminate some of the solutions, the classical remedy to the multiple solu-
tions in fluid and solid mechanics was to force the power of r to match
the limit of problems involving the Lipshitz admissible domain.

However, the existence of these singularities can explain the dis-
crepancy between experimentally observed and theoretically predicted frac-
ture strengths. These local singularities, when averaged over a measurable
domain, will appear as some significantly lower value. Consequently, in the
1imit of the singular region the values predicted by the Griffith and
Fisher-Frenkel models could be correct.

FRACTURE PHOTOGRAPHS

To further illustrate some analogies of crack propagation in solids and
1iquids, we have selected four photographs: two of solid fracture and two
of liquid fracture. , '

Figure 4(a) shows a crack tip region (ref. 37) from which the crack

propagates if the energy criteria equation is satisfied (i.e., stored energy
> energy required to make a new surface, egs. (1) and (2)). The crack tip
is typically very pointed, and healing requires additional energy in the
form of heat or stress (or both). Note that the crack tip here could be
superimposed onto the previously discussed fluid crack tips (fig. 2). The
healing of a fluid crack also requires additional energy; in two-phase flows
the surrounding pressure field is usually sufficient. However, if the
collapse of the crack is to occur without rebound or additional dynamic
phenomena, addition of heat will 'soften' the impact (the heat will drive
the system toward saturation in the subcritical state and in the super-
critical state - supposedly only second-order phase transitions are possi- -
ble). The similarity between the development of hole mobility in both
solids and liquids with stress and temperature is striking, but not un-
expected, as the basic concepts are virtually the same.



~ Figure 4(b) shows a 'feather' crack propagated in a polypropylene plas-
tic block (ref. 38). Here one can clearly see a main-line crack with a
multiplicity of smaller cracks emanating from it generally at an oblique
angle of approximately 30°. The procedure is that the crack propagates to
some nonhomogeneity, stops, and 'shoots' a side crack; upon building suffi-
cient energy, the sequence is repeated. The influence of bulk voids and
"boundaries is significant. Irregularities as nonhomogeneities and surface
scratches lower the free energy for crack propagation, which alters the
developing pattern.

Figure 4(c) illustrates fluid fracture (cavitation) in a simulated
journal bearing (ref. 39). There appears to be a connected set of line
cracks forming the main-line crack with a series of nominal normally propa-
gated cracks forming a fern-like structure. The cracks are assumed to form
in a manner similar to the feather pattern described above. Here, surface-
active sites lower the free energy requirements for cracking by serving as
sources (sinks) for surface-fluid-induced cracking, while distributed nuclei
lTower the energy requirement for bulk-fluid-induced cracking (homogeneous).

Figurev4(dg illustrates how a thin fluid film constrained between two
parallel surfaces fractures as the surfaces are pulled apart (ref. 40). The
radial cracks propagate to later establish fern structure or network pat-
terns which we have observed in our own work (see motion picture supplement).

These 'starburst' fracture patterns are also observed in radially inward
flow of nearly saturated fluid nitrogen (ref. 22, fig. 11).

Further investigation into the radially inward flow data of reference 22
revealed two apparent fracture patterns, pseudo—steady as cited in figure

4(d) and dynamic fluid fracture, which are discussed in the following
section.

RADIALLY INWARD FLOWS
Description of Apparatus

The apparatus is described in reference 22, but some essential features
are worth outlining here. The dewar was a double-walled, high-pressure
vessel with viewing ports, as illustrated in figure 5. The radially inward
flow passage was formed by a glass flat and a stainless-steel or1f1ce flat
separated by three radial wires of 0.0076 cm diameter (3 mils) at 120°.

The radial passage was 0.72 cm in length or approximately 133 L/D. Further
details of the configuration are given in figure 5 and reference 22.

Estimates of Fluid and Bubble Velocities

"For the motion picture sequences, illustrated photographically in fig-
ures 6 and 7 and schematically in figures 8 and 9, the inlet stagnat1on
conditions (ref. 22) are Pg = 1.5 MPa and the 11qu1d nitrogen is satu-
rated. Actually, there must exist a small degree of subcooling; otherwise
the bubble population would be much higher. Under these conditions and for

the geometry of fiqgure 5, two-phase choked flow occurs and can be calculated
by solving



jal

G. = —2? 32 ’ (27)

subject to the constraint that

2 1 dP 2
GmaX (—2— d—p-) l = G* (28)
e e

where G* = o [Z (refs. 27-29). The effect of friction for these flows
c’c'c

is small (to 10 percent) as compared with that of the convective terms and
was therefore omitted. The solution gives the reduced mass flux as (refs.
27 and 28)

Gr,max = 0.23 equilibrium

(29)

Gr,max 0.33 nonequilibrium

Assuming that either a small degree of subcooling or metastability occurs,
the average equilibrium fluid velocity for nitrogen becomes 2240 cm/sec.
From figure 10, which represents the bubble traverse of figures 6 to 9, the
average velocity of the bubble head is 2350 cm/sec, giving a slip velocity
ratio of 1.05. The bubble head velocity near the exit orifice (fig. 5) is
estimated at 4000 cm/sec; the liquid sonic velocity is 4900 cm/sec. The
max imum p0551b1e slip rf}1o, based on inertia-dominated, stratified two-
phase flows are (pg/py) = 3.1 for Pg = 1.5 MPa and 12 for

Phack = 0.12 MPa.

?ﬁus the slip ratio for the bubble head appears to be

1.05 < (Ublul)head < 1.8« /e = 3.1

vmax,P0=1.5

oy 1o, = 12 (30)
Pback=0.12

Using the same procedure, velocity estimates can be made for the bubble
tail. From figures 6 to 9 the average velocity appears to be 1200 cm/sec,
while the velocity near the exit appears to have decreased to 850 cm/sec.
In either case the 'slip' ratio is significantly less than 1 over most of
the traverse across the channel, and this demonstrates that the bubble tail
travels at a rate much less than the local fluid velocity (i.e., .the f1u1d
is impaled on the bubble tail) :

e < (Ub/Utail) < El(El = 1, majority of the traverse) (31)

10



A closer examination of the data of figures 6 to 9 shows that e < 0 s
admissible. And for a bubble flowing into a developed cavity formed by a
previous bubble, the tail closure rate can be well above the average fluid
velocity, €7 > 1. In this case, void condensation (crack healing) is not
understood. Furthermore the bubble tail 'meanders,' which may be attributed
to local vortex streets shed by the passing bubble, specific nucleation sites
along the bubble path, and perhaps bubble column stiffness variations leading
to buckling wave lengths (7&1) about twice those predicted (ref. 41),

M= 2= Dyupbie (32)

Pseudo-Steady Fracture

Figure 11 is a frame taken from a 8000 pps motion picture sequence,
where Po = 1.5 MPa and T + Tsat. It is essentially the one shown in
ref. 22. The extreme irregularity in the two-phase interface may be viewed
as pseudo-steady fluid fracture.

SUMMARY

We have discussed the similarities between the Griffith and Fisher-
Frenkel crack models for solids and liquids, respectively. Both models
predict stresses which are significantly greater than experiment - but by
nearly the same magnitude. The values are affected principally by impuri-
ties and the presence of sharp boundaries (i.e., stress concentrators).
Since the calculations are very complex, a practical estimate would be
ocalc/100. We postulate that nuclei can communicate by wave propagation
and follow nearest-neighbor principles.

The singularity at the crack tip and that associated with wedge flows
exhibit the same type of behavior, indicating that fluid cracking is indeed
possible. Photographs of crack propagation in solids and cavitation in
bearings and separating flat surfaces appear to possess a commonality in
that the main-line crack and attached cracks have similar characteristics.
Furthermore an analysis of the radially inward flow of two-phase choked flow
of fluid nitrogen indicates that the bubble head traverses the narrow chan-
nel with a slip ratio greater than unity. The bubble tail travels much more
slowly and the fluid impales itself on the bubble tail, which implies the
existence of fluid cracking. For this case, void condensation (crack heal-
ing) is not understood. :

These analyses and photographs imply the existence of solid and fluid
fracture and reinforce the analogy between cavitation and fracture mechanics
models. Although these models have a common basis in molecular mechanics,
the fields have developed dissimilar methods and there is a need for enhanced
crossflow of information.

11



APPENDIX - FLUID FRACTURE MODEL, A CHANGE IN PARAMETERS

Assume that the incremental decrease in stored energy due to a crack
advance (change in volume) is

AW

e -aP av

Al
N (A1)

AP
B K
where K s the isothermal bulk modulus (K = E/3(1 - v) for solids).

The creation of additional fracture surface requires an incremental
energy -

AW, =y A (A2)

and for the spherical model, the critical radius becomes

r* = 29k/aP? or AP ~ P = F}ﬁ | (A3)

which is nearly the same as postulated for the Griffith model in solid
fracture.

Following Fisher (ref. 31) the predicted value of stress becomes

y 23 1/4
1] .
Tr(o) = -P = =3 [;T(ln NKTETRT = A%] (A4)

For water, Tr(c) = 500 MPa, which is about 100 times the 3- to 5-MPa value
for water on glass recommended by Temperley (ref. 17). When the relation

o = b/ZYE/nC from the Griffith model is used, the predicted stresses are
also about 100 times too large (ref. 33).

12
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Figure 2.-Schematic illustrating singularity regions for wedge flow and
crack tip.
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Figure 3. - Dependence of pressure on the power of r.

(a) Crack tip.
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(b) Feather crack in polypropylene (plastic). Fatigue crack in 8 mm
thick compact tension specimen of polypropylene. The micrograph
is taken from a thin section ( ~ micrometer) cut normal to the
fracture surface. Note the damage disseminated around and ahead
of the main crack.

Figure 4. - Fracture propagation in solids and liquids.
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(d) Fluid fracture between parallel plates.
Figure 4. - Concluded.
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(4a) Top of frame. (%a) Top.
{4b) Bottom of frame. (5b) Bottom,

(6a) Top.
(6b) Bottom.

Figure 6. - Photographic representations of bubble traverse for radial inward flows of fluid nitrogen.
Corresponding data plots shown in figure 10.



(7a) Top. (8a) Top.
(7b) Bottom. (8b) Bottom.

(9a) Top.
(9b) Bottom.

Figure 7. - Photographic representations of bubble traverse for radial inward flows of fluid nitrogen.
Corresponding data .plots shown in figure 10.
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